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ABSTRACT 

A r a d i o t r a c e r  method f o r  t h e  measurement of t he  
mass holdup of a s o l u t e  being processed  i n  a counter -  
c u r r e n t  pu l se  column us ing  the  average  r e s idence  time 
d i s t r i b u t i o n  is  p resen ted  and i n v e s t i g a t e d  by mathemat- 
i c a l  modelling. Typica l  s o l u t i o n s  t o  t h e  model f o r  
impulse t r a c e r  i n j e c t i o n s  of t h e  s o l u t e  a t  t h e  i n l e t  
show t h a t  whi le  t he  number and volume of s t a g e s  have a 
s i g n i f i c a n t  e f f e c t  on t h e  response  of t he  system, t h e  
amount of backmixing has l i t t l e  e f f e c t ,  p a r t i c u l a r l y  
f o r  sma l l  systems. The sys tem response  t o  impulse 
t r a c e r  i n j e c t i o n s  under var ious  cond i t ions  was simula- 
t ed  wi th  t h i s  model and model parameters  were e x t r a c t e d  
from these  s imula ted  r e s u l t s  by us ing  a non l inea r  l e a s t  
squa res  method t o  demonst ra te  t he  approach. 

I N T R O D U C T I O N  

One of t h e  techniques  t h a t  would be u s e f u l  i n  t h e  r e a l  t i m e  
de t e rmina t ion  of t he  uranium holdup i n  ope ra t ing  coun te rcu r ren t  pu lse  
column s o l v e n t  e x t r a c t i o n  processes  i s  t h e  de t e rmina t ion  of t he  
average  r e s idence  t i m e  d i s t r i b u t i o n  (RTD) by t h e  impulse t r a c e r  
method. The mass holdup of uranium i n  t h e  column is  i d e n t i c a l l y  t h e  
uranium mass f low r a t e  through the  column times the  average  r e s idence  
t i m e  of the  uranium. Th i s  approach would be even more a t t r a c t i v e  i f  a 
dynamic model of t he  p rocess  wi th  a d j u s t a b l e  parameters  were a v a i l -  
a b l e  s o  t h a t  t h e  average  r e s idence  t i m e  could be determined by the  
l ea s t - squa res  f i t t i n g  of d a t a .  This approach would a l low much 
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270 GARDNER, IQBAL, AND VERGHESE 

s h o r t e r  measurement t i m e s  t h a n  t h o s e  d i c t a t e d  by u s i n g  t h e  n u m e r i c a l  
i n t e g r a t i o n  o f  d a t a  t h a t  r e q u i r e s  t a k i n g  d a t a  f o r  v e r y  l o n g  t i m e s  
t o  f u l l y  c h a r a c t e r i z e  t h e  l o n g  t a i l  of  t h e  RTD ( 1 , 2 ) .  T h i s  is t h e  
pr imary  i n c e n t i v e  f o r  t h e  p r e s e n t  work on  t h e  development  of a 
s u i t a b l e  dynamic model f o r  t h i s  p r o c e s s .  

A s c h e m a t i c  d iagram of t h e  p u l s e  column c o n f i g u r a t i o n  of i n t e r e s t  
h e r e  is shown i n  F i g u r e  1. Note t h a t  t h e  o r g a n i c  and i n o r g a n i c  phases  
a r e  f e d  a t  o p p o s i t e  ends o f  t h e  column w i t h  c o r r e s p o n d i n g  p r o d u c t  
s t r e a m s  a t  t h e  o t h e r  ends .  L a b o r a t o r y  s c a l e  a p p a r a t u s  of t h i s  t y p e  
i s  p r e s e n t l y  b e i n g  b u i l t  f o r  t h e  i n i t i a l  e x p e r i m e n t a l  s t u d i e s  t h a t  a r e  
p lanned .  

Fig.  1. Schemat ic  d iagram of t h e  p u l s e  column 
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DYNAMIC MODEL FOR RADIOTRACER DETERMINATION 271 

The choice  of model l ing  approaches t o  t h i s  problem were in f luen -  
ed p a r t l y  by our prev ious  success  w i t h  t h e  c r o s s  f low f i n i t e  s t a g e  
models t h a t  have been employed wi th  b a l l  m i l l  p rocesses  ( 3 , 4 )  and t h e  
f l o t a t i o n  process  ( 5 , 6 )  and by the  l i t e r a t u r e  survey  made by Burkhar t  
( 7 ) ,  t he  paper  by R icke r ,  Nakashio, and King (8) ,  and t h e  paper by 
Riery  and Boylan ( 9 ) .  

The b a s i c  model employed he re  is  almost i d e n t i c a l  t o  t h a t  of 
R icke r ,  Nakashio, and King (8) except  t h a t  he re  t h e  dynamic case  i s  
cons idered  i n s t e a d  of t he  s t e a d y - s t a t e  case  t o  o b t a i n  t h e  tracer 
p r o f i l e  a t  t h e  e x i t s  as a func t ion  of t i m e .  The major assumption i n  
t h i s  ca se  i s  t h a t  each phase is adequate ly  modelled by a series of N 
p e r f e c t l y  mixed tanks  of equa l  volume i n  series wi th  backmixing. 
I n t e r p h a s e  mass t r a n s f e r  i s  accounted €o r  by a l lowing  t r a n s f e r  from 
one phase t o  t h e  o t h e r  a t  each c e l l .  B ie ry  and Boylan (9 )  prev ious ly  
t r e a t e d  t h i s  problem dynamically on a d i f f e r e n t i a l  b a s i s  t o  p r e d i c t  
t h e  t i m e  r equ i r ed  t o  reach  system s t eady  s t a t e ,  assuming p lug  flow of 
t h e  s o l u t e  i n  t h e  aqueous phase and n e g l i g i b l e  l o n g i t u d i n a l  t u r b u l e n t  
d i f f u s i o n .  A paper  by Har t l and  and Mecklenburg (10)  compared t h e  
d i f f e r e n t i a l  and s t agewise  t r ea tmen t s  of counter -cur ren t  e x t r a c t i o n  
p rocesses  w i t h  backmixing f o r  cases  where t h e r e  i s  a l i n e a r  e q u i l i -  
brium r e l a t i o n s h i p .  They show t h a t  t h e  expres s ions  ob ta ined  f o r  both 
approaches  a r e  remarkably s i m i l a r  and t h a t  they are i d e n t i c a l  when t h e  
number of s t a g e s  N i n  t h e  s taged  model approaches i n f i n i t y .  However, 
t h e i r  paper treats only  the  s t eady  s t a t e  case  which cannot be a p p l i e d  
t o  t h e  impulse t r a c e r  i n j e c t i o n .  B r i t s c h  and Eber t  (11)  r epor t ed  t h e i r  
work us ing  r a d i o t r a c e r s  t o  determine the  l o n g i t u d i n a l  mixing i n  both 
phases.  They u t i l i z e d  d i f f e r e n t  r a d i o t r a c e r s  t o  s tudy  each phase 
s e p a r a t e l y .  A s i m i l a r  work was c a r r i e d  out  by Bensalem, S t e i n e r ,  and 
Har t l and  ( 1 2 )  who used chemical and dye t r a c e r s  t o  s tudy  a x i a l  
d i s p e r s i o n .  

MODEL DERIVATION 

The p u l s e  column shown i n  F igure  1 has been r ep resen ted  by a 
s t agewise  process  as shown i n  F igure  2. For s imula t ion  of the  pu l se  
column i n  the  time domain, t h e  b a s i c  m a t e r i a l  ba lance  equa t ions  f o r  
t h e  t r a c e r  s o l u t e  i n  t h e  i t h  s t a g e  of each phase a r e  g iven  by the  
fo l lowing  r e l a t i o n s  ( 7 )  

aqueous phase 

v d x . / d t  = (l+u)G(xi-l-xi) + a G ( ~ ~ + ~ - x ~ )  - q i  
x 1  

organ ic  phase 

w i t h  

4 .  = ( K  a )v(x . -x i*)  = ( K  a )  (y;-yi) 
Y 
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2 7 2  GARDNER, IQBAL, AND VERGHESE 

Stage i 

Heovy  liquid Light liquid 
in out 

Heavy liquid Light liquid 
out in 

Fig. 2. F i n i t e  s tage  model of t h e  p u l s e  columtl 
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DYNAMIC MODEL FOR RADIOTRACER DETERMINATION 2 7 3  

The assumptions i n  d e r i v i n g  t h i s  model a r e  t h a t  t h e r e  i s  p e r f e c t  
mixing wi th in  each  s t a g e  of each phase,  t h e  volume of each s t a g e  is  
cons t an t  w i t h  cons t an t  backmixing c o e f f i c i e n t s  i n  both phases ,  and 
t h e r e  is a cons t an t  mass t r a n s f e r  c o e f f i c i e n t .  I t  is f u r t h e r  assumed 
t h a t  t h e r e  i s  an equa l  number of s t a g e s  i n  each  phase and t h a t  t h e  
amount of s o l u t e  t r a n s f e r  between phases is n e g l i g i b l e  compared t o  t h e  
t o t a l  volumes i n  each  s t a g e  of each phase and t h e  t o t a l  f low r a t e s  
involved .  

S ince  ; 

v = FxV /N 

v = F V / N  
Y Y  

Y 
and Fx + F = 1. 

t h e r e  i s  a se t  of e i g h t  independent parameters  t h a t  completely 
d e s c r i b e  t h e  sys tem,  namely G ,  H, N ,  v ,  (Kxa) o r  ( K  a ) ,  F , a ,  and 6. 
The f low r a t e s  G and H a r e  usua l ly  independent ly  knogn, so" t h e r e  a r e  
s i x  parameters  t h a t  must be determined i n  us ing  t h e  model. 

MODEL PREDICTIONS 

The model i s  used t o  o b t a i n  the  dynamic response  of t h e  pu l se  
column from an impulse inpu t  of t r a c e r  under t h e  v a r i o u s  c o n d i t i o n s  
l i s t e d  i n  Table 1. The response  of the  system (sum of concen t r a t ions  
a t  t h e  e x t r a c t  and r a f f i n a t e  m u l t i p l i e d  by t h e i r  r e s p e c t i v e  f low 
r a t e s )  a r e  p l o t t e d  as a func t ion  of t i m e  a f t e r  an impulse i n p u t  of t he  
t r a c e r  a t  t he  i n l e t  of t he  aqueous phase and a r e  shown i n  F igu res  3 
and 4. A cons t an t  va lue  of 2.5 is used f o r  t he  d i s t r i b u t i o n  cons t an t  

KD. Equat ions  l a  and Ib were so lved  numer ica l ly  us ing  a f o u r t h  o rde r  
v a r i a b l e  s t e p  Runge-Kutta method. The computer program f o r  t h i s  method 
i s  g iven  by Gear (13) .  I t  so lves  a system of o r d i n a r y  d i f f e r e n t i a l  
equa t ions  and i n c o r p o r a t e s  a s e l f  c o r r e c t i o n  technique  f o r  minimizing 
t h e  e r r o r  bu i ldup  i n  t h e  numerical  s o l u t i o n .  

DETERMINATION OF MODEL PARAMETEPZ 

When a t r a c e r  i s  i n j e c t e d  a t  t he  heavy phase inpu t  and measured 
a t  the  l i g h t  and heavy phase ou tpu t s  us ing  two d e t e c t o r s ,  t h e  t o t a l  
response  of t he  system i s  given by 

Where the  func t ion  f ( t ) ,  which can be obta ined  by an o f f - l i n e  measure- 
ment ( 3 ) ,  t akes  i n t o  account t h e  r a d i o a c t i v e  decay of t h e  t r a c e r .  The 
d e t e c t o r  y i e l d s  Y and Y2 and the  background count ing  rate RB a r e  
known l i n e a r  parame4ers. The heavy and l i g h t  phase ou tpu t  concent ra -  
i o n s ,  % ( t )  and y l ( t ) ,  a r e  t h e  s o l u t i o n  of Equat ions  l a  and l b ,  
r e s p e c t l v e l y ,  and c o n t a i n  t h e  parameters  d e s c r i b i n g  t h e  system. A 
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274 GARDNER , LQBAL, AND V E R G H E S E  

TABLE 1 

Assumed Values for the Simulation of Data 

CASE N V ( c r n 3 )  K,a(hr-') FX [I B 

1 2 200 2 . 0  0 . 5  0 . 0 1  0 . 0 1  

2 2 200 2 . 0  0 . 5  0 . 4  0 . 0 1  

3 

4 

2 200 2 .0  0 .3  0 . 0 1  0 . 0 1  

4 4 0 0  2 . 0  0 . 5  0 . 0 1  0 . 0 1  

5 4 400  2 . 0  0 . 5  0 . 4  0 . 0 1  

6 4 4 0 0  2 . 0  0 . 3  0 . 0 1  0 . 0 1  

----- tsro 2 

0 0 0 0 0  c m - 3  

0.0 0.5 1.0 1.s 2.0 
TIME fhrl 

Flp. 3. OYNRHIC BEtKWtOR OF PULSE COLUMN 
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DYNAMIC MODEL FOR RADIOTRACER DETERMINATION 275 

___ Case 4 _ _ _ _ _  Case 5 

00000 Case 6 

0.0 0.5 1.0 1.5 2.0 
TIME lhr) 

Flp. 4. DYNRMrC BEHAVIOR OF P U L X  COLUHN 

n o n l i n e a r  l e a s t  s q u a r e s  s e a r c h  can  be used  t o  d e t e r m i n e  t h e s e  
p a r a m e t e r s  u s i n g  E q u a t i o n  L t o  f i t  t h e  e x p e r i m e n t a l  d e t e c t o r  r e s p o n s e  
R ( t )  to  model v a l u e s .  A computer  program c a l l e d  CURCON ( 1 4 ) ,  a modi- 
f i e d  v e r s i o n  of one g i v e n  by Bevington  (15) ,  h a s  been developed  t o  
d e t e r m i n e  t h e  optimum v a l u e s  of t h e  s e a r c h e d  p a r a m e t e r s  by minimiz ing  
t h e  reduced  Chi-square v a l u e s  w i t h  r e s p e c t  t o  e a c h  of t h e  p a r a m e t e r s  
s i m u l t a n e o u s l y .  I t  u t i l i z e s  t h e  combined g r a d i e n t  s e a r c h  and p a r a b o l i c  
e x t r a p o l a t i o n  a l g o r i t h m  d e r i v e d  by Marquardt  ( 1 6 ) .  

Data  S i m u l a t i o n  ~ - _ _ _  

S i m u l a t e d  d e t e c t o r  r e s p o n s e  c u r v e s  t h a t  would be o b t a i n e d  w i t h  
a r a d i o a c t i v e  t r a c e r  a r e  g e n e r a t e d  i n  o r d e r  t o  i n v e s t i g a t e  t h e  
a c c u r a c y  and s e n s i t i v i t y  of t h e  computer  programs w r i t t e n  f o r  apply-  
i n g  t h e  method. Assuming t h e  v a l u e s  of t h e  p a r a m e t e r s  as g i v e n  i n  
T a b l e  1 ,  c o u n t i n g  r a t e s  a r e  c a l c u l a t e d  a s  a f u n c t i o n  of t ime a f t e r  
t r a c e r  i n j e c t i o n .  S imula ted  d e t e c t o r  r e s p o n s e s  a r e  t h e n  g e n e r a t e d  by 
assuming t h a t  t h e  c o u n t i n g  r a t e s  a r e  G a u s s i a n  d i s t r i b u t e d  w i t h  s t a n d -  
s t a n d a r d  d e v i a t i o n s  e q u a l  t o  t h e  s q u a r e  r o o t  of t h e  c o u n t i n g  r a t e  
d i v i d e d  by t h e  t ime o v e r  which t h e  c o u n t i n g  r a t e  is d e t e r m i n e d  a s  
would be t h e  c a s e  f o r  a c t u a l  c o u n t i n g  r a t e s .  The d e t e c t o r  y i e l d s  were 
t a k e n  t o  be e q u a l  t o  u n i t y  and a n e g l i g i b l e  background r e s p o n s e  was 
assumed. The s e a r c h e d  p a r a m e t e r s  f o r  t h e  v a r i o u s  c o n d i t i o n s  a r e  g i v e n  
i n  T a b l e  2 and t h e  d e t e c t o r  r e s p o n s e  R ( t )  f o r  Case 2 i s  p l o t t e d  a s  a 
f u n c t i o n  of t ime i n  F i g u r e  5 comparing t h e  s i m u l a t e d  and f i t t e d  d a t a .  
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2 7 6  G A R D N E R ,  I Q B A L ,  AND VERGHESE 

TABLE 2 

Values Found in the Search f o r  the Model Parameters 

LY 
2 

CASE N V(cm3) K,a(hr-’) f, B x v  

1 2 199.88 2.0041 0.5108 0.0001 0.0256 22.65 

2 2 200.04 2.0616 0.5589 0.2525 0.1108 20.98 

3 2 198.46 1.9900 0.3122 0.1004 0.0287 20.81 

4 4 394.77 1.9590 0.5094 0.0789 0.0214 22.67 

5 4 396.68 1.9645 0.5102 0.3393 0.0372 23.08 

6 4 400.53 2.0138 0.3075 0.0310 0.0102 21.04 

Heavy-phase flow rate (G) = 50 (cm3/hr) 

Light-phase f l o w  rate (H) = l o o  (cm3/hr) 

__ Fitted 

o o o o o  Simulated 

0.0 0 .5  1.0 1.5 2.0 
TlHE fhr) 

ftp. 5. 7RRIIER IHPULSE RESPONSE OF PULSE COLUMN 
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DYNAMIC MODEL FOR RADIOTRACER D E T E R M I N A T I O N  2 7 7  

Mass Holdup 

I n  a pu l se  column ope ra t ing  a t  s t eady  s t a t e ,  w i th  a cons t an t  in- 
ven to ry  of m a t e r i a l  over a time i n t e r v a l  T ,  t h e  in-process  inven to ry  
can be determined knowing the  average r e s idence  t i m e  T as fo l lows ,  

I = r F  ( 5 )  

The r e s idence  t i m e  d i s t r i b u t i o n  (RTD) is  given as, 

E ( t )  = R(t)/j:R(t)dt ( 6 )  

where R ( t )  is given by equat ion  4 .  The average  r e s idence  time 7 
is obta ined  from: 

T = 1; t E ( t )  d t  ( 7 )  

Note t h a t  the  i n t e g r a l s  i n  equat ions  6 and 7 have an upper i n t e -  
i n t e g r a t i o n  l i m i t  on time of i n f i n i t y .  In  t h e  usua l  case  where the  
ne t  count ing  r a t e  R ( t )  approaches z e r o  asymtomat ica l ly  as t i m e  
approaches  i n f i n i t y  and a non-negl ig ib le  background count ing  r a t e  
e x i s t s ,  t h e  numerical  i n t e g r a t i o n  process  wi thout  a model i s  ve ry  
i n a c c u r a t e  and r e q u i r e s  t h a t  d a t a  be taken  f o r  a long time so t h a t  t h e  
t a i l  of the  count ing  r a t e  curve is w e l l  c h a r a c t e r i z e d .  When a model i s  
a v a i l a b l e  t h a t  i s  not i n t e g r a b l e ,  t h e  problem of t ak ing  d a t a  f o r  a 
long  t i m e  can be avoided, but numerical  i n t e g r a t i o n  s t i l l  con ta ins  
cons ide rab le  inaccuracy .  To avoid t h i s  inaccuracy  problem and t o  
reduce t h e  time r equ i r ed  f o r  t ak ing  d a t a  t o  the  minimum p o s s i b l e ,  one 
would l i k e  t o  have a mathematical  model of R ( t )  and E ( t )  t h a t  can be 
i n t e g r a t e d  a n a l y t i c a l l y .  The model need not con ta in  a l l  of the  para- 
meters t h a t  desc r ibe  the  process ;  a phenomenological o r  semi-empirical  
model with a few a d j u s t a b l e  parameters w i l l  s u f f i c e .  I n  t h a t  r ega rd  
t h e  model desc r ibed  and used he re  probably i s  too  d e t a i l e d .  We a r e  
p r e s e n t l y  i n v e s t i g a t i n g  o t h e r  s taged  models (17)  t h a t  y i e l d  a n a l y t i c a l  
models f o r  E ( t )  t o  be used i n  p lace  of equa t ions  l a ,  lb ,  and 2. 

The average  r e s idence  time ob ta ined  f o r  each case  l i s t e d  i n  Table 
1 and Table  2 is  t a b u l a t e d  i n  Table 3. Equation 7 is so lved  numeri- 
c a l l y  as the  s o l u t i o n  of the model s i n c e  R ( t )  p re sen ted  i n  t h i s  paper 
must be obta ined  numer ica l ly  a t  the  p re sen t  time. 

DISCUSSION AND CONCLUSIONS 

I t  is c l e a r  from Figure  3 t h a t  t h e  backmixing c o e f f i c i e n t s  have 
l i t t l e  e f f e c t  on t h e  ope ra t ion  of t he  pu l se  column (Case 1 wi th  a = 
0.01 and Case 2 w i th  a = 0.4) as compared t o  t h e  holdup r a t i o  of t he  
two phases (Case 1 wi th  F = 0.5 and Case 3 with F = 0.3). However, 
t h e  e f f e c t  i s  more promHnent f o r  a l a r g e r  system (F igure  4 ,  Case 
4 wi th  a = 0.01 and Case 5 wi th  a = 0.4). Table 2 shows t h a t  t he  
s e a r c h  method developed and used here  is very s e n s i t i v e  f o r  a l l  t h e  
parameters  except  t he  backmixing c o e f f i c i e n t s .  The i n s e n s i t i v i t y  of 
t he  p u l s e  column ope ra t ion  t o  t h e  backmixing c o e f f i c i e n t s  makes i t  
d i f f i c u l t  t o  s e a r c h  f o r  t hese  parameters .  The parameter s e a r c h  
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TABLE 3 

Average Residence Time 

CASE Residence Time ( h r )  

Using Assumed Parameters Using Searched Parameters 

1.01973 

1.03058 

1.06758 

1.28858 

1.35667 

1.02058 

1.03095 

1.06795 

1.30094 

1.35736 

6 1.36809 1.36949 

r e s u l t s  f o r  Case 3 a r e  p l o t t e d  i n  F igu re  5 comparing t h e  s imula ted  
( a c t u a l )  and f i t t e d  (model w i th  searched parameters )  da t a .  Tahle 3 
a l s o  shows t h a t  t he  average r e s idence  t ime of t h e  s o l u t e  i s  not a 
s t r o n g  func t ion  of backmixing, p a r t i c u l a r l y  f o r  small sys tems,  whi le  
t he  holdup r a t i o  of t he  two phases g r e a t l y  e f f e c t s  t h i s  parameter.  

The i n s e n s i t i v i t y  t o  backmixing parameters  sugges t s  t h a t  o t h e r  
s i m p l e r  models might be employed which could y i e l d  a n a l y t i c a l  express -  
i ons  f o r  t r a c e r  response .  

NOMENCLATURE 

a 

F = f eed  r a t e  of s o l u t e  m a t e r i a l  (kg /h r )  

Fx = volume f r a c t i o n  of one s t a g e  of the  heavy phase 

F = volume f r a c t i o n  of one s t a g e  of the  l i g h t  phase 
Y 

G = heavy phase t o t a l  flow rate (cm3 / h r )  

k1 = l i g h t  phase t o t a l  f low r a t e  (cm3 / h r )  

KD = e q u i l i b r i u m  d i s t r i b u t i o n  cons t an t  

Kx = mass t r a n s f e r  c o e f f i c i e n t  based on the  x phase (cm/hr) 

K = mass t r a n s f e r  c o e f f i c i e n t  based on t h e  y phase (cm/hr) 
Y 7 

V = t o t a l  e f f e c t i v e  volume of the  system (cm") 

v = volume of both phases in  s t a g e  i (cm') 

v = volume of heavy phase (cm") 

v = volume of l i g h t  phase (cm ) 

= i n t e r f a c i a l  a r e a  per u n i t  volume (cm2 /cm') 

7 

3 
Y 
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3 x .  = heavy p h a s e  s o l u t e  c o n c e n t r a t i o n  i n  s t a g e  i (gm/cm ) 

x.* = c o n c e n ~ r ~ t i o n  of x i n  e q u i l i b r i u m  w i t h  y (gm/cm ) 3 

(xi* = y i  /KD) 
3 

yi  
yi* = c o n c e n t r a t i o n  of y i n  e q u i l i b r i u m  w i t h  x (gm/cm ) 

= l i g h t  p h a s e  sol l i te  c o l i c e n t r a t i o n  i n  s t a g e  i (gm/cm ) 
3 

(y i*  = KD x i )  

Greek  L e t t e r s  

a = f r a c t i o n  of heavy phase  f l o w  ra te  f l o w i n g  backwards  

( t h e  heavy p h a s e  backmixing  c o e f f i c i e n t )  

B = f r a c t i o n  of l i g h t  p h a s e  f l o w  ra te  f l o w i n g  backwards 

( t h e  1it;ht p h a s e  backmixing  c o e f f i c i e n t )  

T = a v e r a g e  r e s i d e n c e  t i m e  ( h r )  

x V 2  = rediicetl c h i - s q u a r e  v a l u e  

S u b s c r i p t  

i = s t a g e  number 
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